Fiber-Amplifier-Enhanced QEPAS Sensor for Simultaneous Trace Gas Detection of NH3 and H2S
نویسندگان
چکیده
A selective and sensitive quartz enhanced photoacoustic spectroscopy (QEPAS) sensor, employing an erbium-doped fiber amplifier (EDFA), and a distributed feedback (DFB) laser operating at 1582 nm was demonstrated for simultaneous detection of ammonia (NH₃) and hydrogen sulfide (H₂S). Two interference-free absorption lines located at 6322.45 cm(-1) and 6328.88 cm(-1) for NH₃ and H₂S detection, respectively, were identified. The sensor was optimized in terms of current modulation depth for both of the two target gases. An electrical modulation cancellation unit was equipped to suppress the background noise caused by the stray light. An Allan-Werle variance analysis was performed to investigate the long-term performance of the fiber-amplifier-enhanced QEPAS sensor. Benefitting from the high power boosted by the EDFA, a detection sensitivity (1σ) of 52 parts per billion by volume (ppbv) and 17 ppbv for NH₃ and H₂S, respectively, were achieved with a 132 s data acquisition time at atmospheric pressure and room temperature.
منابع مشابه
Near-infrared Quartz Enhanced Photoacoustic Sensor for Sub-ppm Level H2S Detection based on a Fiber-amplifier Source
An enhanced near-infrared quartz enhanced photoacoustic spectroscopy (QEPAS) sensor for subppm level H2S detection by means of a fiber amplified 1582 nm distributed feedback laser was developed. Experimental studies demonstrated that a H2S detection sensitivity of 142 ppbv can be achieved by the reported power-boosted QEPAS sensor at atmospheric pressure and room temperature. OCIS codes: (280.3...
متن کاملQuartz-Enhanced Photoacoustic Spectroscopy: A Review
A detailed review on the development of quartz-enhanced photoacoustic sensors (QEPAS) for the sensitive and selective quantification of molecular trace gas species with resolved spectroscopic features is reported. The basis of the QEPAS technique, the technology available to support this field in terms of key components, such as light sources and quartz-tuning forks and the recent developments ...
متن کاملPlanar Laser-Based QEPAS Trace Gas Sensor
A novel quartz enhanced photoacoustic spectroscopy (QEPAS) trace gas detection scheme is reported in this paper. A cylindrical lens was employed for near-infrared laser focusing. The laser beam was shaped as a planar line laser between the gap of the quartz tuning fork (QTF) prongs. Compared with a spherical lens-based QEPAS sensor, the cylindrical lens-based QEPAS sensor has the advantages of ...
متن کاملCompact quantum cascade laser based quartz-enhanced photoacoustic spectroscopy sensor system for detection of carbon disulfide.
A compact gas sensor system based on quartz-enhanced photoacoustic spectroscopy (QEPAS) employing a continuous wave (CW) distributed feedback quantum cascade laser (DFB-QCL) operating at 4.59 µm was developed for detection of carbon disulfide (CS2) in air at trace concentration. The influence of water vapor on monitored QEPAS signal was investigated to enable compensation of this dep...
متن کاملReal time ammonia detection in exhaled human breath using a distributed feedback quantum cascade laser based sensor
A continuous wave, thermoelectrically cooled, distributed feedback quantum cascade laser (DFB-QCL) based sensor platform for the quantitative detection of ammonia (NH3) concentrations present in exhaled human breath is reported. The NH3 concentration measurements are performed with a 2f wavelength modulation quartz enhanced photoacoustic spectroscopy (QEPAS) technique, which is very well suited...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 15 شماره
صفحات -
تاریخ انتشار 2015